Open-Source from the Trenches

Ken Webb

Open Source Software Seminar
Carleton University, School of Computer Science
March 16, 2007

ken@primordion.com
Background

- ObjecTime, IBM Rational Rose RealTime commercial products.
- Published several papers with Tony White.
- These models are inaccessible to other researchers.
- And, I started using these tools in new ways.
- I started to create my own modeling tool, based on UML 2.0, and built using Java and XML.
Xholon

- A research project and software development tool that executes models of systems.
 - Including event-driven applications
 - Multi paradigm
 - Systems can be of arbitrary size
 - Embedded systems, controllers; Agent-based, swarms, etc.

- Goal of Xholon
 - To be able to model and execute a broad range of event-driven and complex systems, using same basic constructs in all of them.
Core Concept - Trees

- Everything in Xholon is a node in a tree.
- Tree nodes can cross connect with each other, using UML ports and connectors.
 - Networks, graphs, grids are overlaid on top of the primary tree structure.
- Any node in the tree can be an active object or agent, and can navigate the tree to interact with any other object.
 - Can move to a new part of the tree, can create new nodes and subtrees, can move/delete other nodes, can act on other passive nodes, etc.
Examples – Why trees are important

- UML state machines as tree structures.
- Genetic programming for tree manipulation.
- XML as a standard for presenting trees in text.
- Biological systems as one system inside another.
Xholon Modeling Constructs

- The basic Xholon modeling constructs are aligned with UML 2 constructs.
 - UML is a good starting point.
- These constructs include - classes, composite structure, parts, ports, connectors, state machines.
- Active objects are agents, each with its own independent behavior.
Composite Structure, Ports
Use of Open Source

- Xholon depends on lots of other products, mostly open-source.
 - XPP3 for reading in XML configuration files.
 - JFreeChart and gnuplot for line charts.
 - JUNG for tree and network graphs.
 - ECJ for genetic programming.
 - UMLGraph, plotutils for runtime sequence diagrams.
 - libsbml to import biology simulations.
 - xalan-j for transformation from UML to Xholon
 - MagicDraw (commercial) for UML 2.0 modeling.
- Most of these include other open-source packages.
Use of Open Standards

- As important as open source
 - Sun's Java is now open source
 - XML is a family of useful standards
 - UML is a great starting point for modeling
 - XPath-based tree navigation is central to Xholon
 - Systems Biology Markup Language (SBML)
 - XSLT
 - PNG
Demo of Xholon

- Cell, Life models (composite structure)
- Elevator controller (state machines, UML)
- Brusselator (SBML, Math Integration)
- Two very recent enhancements:
 - Turtle geometry, NetLogo-like
 - Observer Pattern
Some practical issues

- Bloat, from the large number of excellent open-source packages available that can/could be used in conjunction with Xholon.

 - One modeling package I recently downloaded needed 500MB to run, because of all the open-source packages it uses.

- Time consuming to keep on top of possibly useful open-source packages; evaluation

- Packaging, dependencies

 - How to provide my users with all the other packages.
Some Practical Benefits of Open Source

- Provides a rich assortment of capabilities that can be brought together in new ways.
- Legitimizes non-commercial software development.
- Provides a legal framework; GPL, other licenses.
Conclusions

- I'm happy to help anyone get started using Xholon in a research project.
- There are lots of aspects of the Xholon project that need help from contributors.

http://www.primordion.com/Xholon/

Contact Ken: ken@primordion.com